比例的化简
例:甲产品销量的3/7与乙产品销量号的4/5相等,则甲、乙产品销量之比为?
参考解析:通过题干可以得出甲×3/7=乙×4/5,则甲:乙=7X4:5X3=28:15。由此观察可得,甲最终的份数是其所对应的分母和乙所对应的分子相乘而来,乙所对应的份数由其所对应的分母和甲所对应的分子相乘而来,所以我们在比例的化简中可以得出一句口诀“分母是自己的,分子是别人的。”
比例的统一
例1、若甲车间初级、中级技工人数之比为5∶3,中级、高级技工人数之比为2∶1,则甲车间初、中、高级技工人数之比为?
解析:题干中给出初:中=5:3,中:高=2:1,大家观察这两个比例关系不难发现,两个比例关系中都存在一个相同的量也就是中级技工的人数,那最终我们要求三者之比其实就可以借助中级这个不变量进行统一,把中级人数的份数变为相同份数,这样一份所对应的实际量也就一样了,两个比例关系也就统一到同一个维度上了。那我们可以把中级的人数统一成6分,第一个比例关系扩大2倍,第二个比例关系扩大3倍,最终可以得到初:中:高=10:6:3。
例2、若甲、乙两车间的技工人数之比为8∶5,甲车间有5名技工调转到乙车间,此时甲、乙两车间技工人数之比为3∶2,则乙车间原来和现在的技工人数之比为?
解析:本题中存在两个比例关系,这两个比例关系并没有很明显的不变量,但是其实大家再去认真思考,会发现其实两个比例关系其实隐藏了一个不变量即总量,所以可以借助总量进行统一,第一个比例关系总量为13份,第二个为5份,则可以统一为其最小公倍数65份,第一个扩大5倍,第二个扩大13倍,最终可以得到所求为25:26。
由以上两道例题我们可以得出比例解决的核心思想是什么呢,其实就是找到不同比例关系中都存在且不变量,然后统一为最小公倍数即可。
正反比的运用
在数量遇到的题中,常用到的思想为正反比的思想。当乘积为定值时成反比,商为定值时成正比。
例:已知自行车与摩托车的速度比是2∶3,摩托车与汽车的速度比是2∶5。已知汽车15分钟比自行车多走11公里,问自行车30分钟比摩托车少走多少公里?
A.2
B.4
C.6
D.8
解析:本题中根据题干不难发现三种车辆行使的时间相同,时间一定,路程和速度存在正比关系。根据摩托车的速度进行比例统一,可得自行车、摩托车、汽车速度之比为4∶6∶15。由汽车15分钟比自行车多走11公里,可知15分钟内三者所走路程分别是4公里、6公里、15公里,则30分钟自行车、摩托车所走路程分别是8公里、12公里,自行车比摩托车少走4公里。故本题答案为B。